Power Decoupling Method Based on the Diagonal Compensating Matrix for VSG-Controlled Parallel Inverters in the Microgrid

نویسندگان

  • Bin Li
  • Lin Zhou
چکیده

The thought of the virtual synchronous generator (VSG) for controlling the grid-connected inverters and providing virtual inertia to the microgrid is emerging as a wide extension of the droop control, power coupling that always exists in the low-voltage microgrid, which may deteriorate the dynamic response and the stability of the system. In this paper, the principle of VSG control is introduced first. As an important issue of VSG control, the mechanism of the power coupling in the low-voltage microgrid is analyzed and the small-signal equivalent model of the power transmission loop is established. Subsequently, a power decoupling method based on the diagonal compensating matrix for VSG is proposed, which can realize the power decoupling with no impact on the original control channel. Meanwhile, the feasibility analysis of the decoupling method and the improved approach for reactive power sharing are also discussed. Simulation results verify the effectiveness of the decoupling strategy for VSGs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Imbalance Compensation for Droop-Controlled Inverters in Islanded Microgrid

In this paper, a new control strategy is proposed for implementation in low-voltage microgrids with balanced/ unbalanced load circumstances. The proposed scheme contains, the power droop controllers, inner voltage and current loops, the virtual impedance loop, the voltage imbalance compensation. The proposed strategy balances the voltage of the single-phase critical loads by compensating the im...

متن کامل

Accurate power sharing for parallel DGs in microgrid with various-type loads

Microgrids are nowadays used to produce electric energy with more efficiency and advantage. However, the use of microgrids presents some challenges. One of the main problems of the microgrids widely used in electrical power systems is the control of voltage, frequency and load sharing balance among inverter- based distributed generators (DGs) in islanded mode. Droop method performance degra...

متن کامل

Accurate power sharing for parallel DGs in microgrid with various-type loads

Microgrids are nowadays used to produce electric energy with more efficiency and advantage. However, the use of microgrids presents some challenges. One of the main problems of the microgrids widely used in electrical power systems is the control of voltage, frequency and load sharing balance among inverter- based distributed generators (DGs) in islanded mode. Droop method performance degra...

متن کامل

Static Synchronous Compensating Voltage Control in Power System Using Flat Adaptive Control

Static Synchronous Compensator (STATCOM) is a FACTS device whose structure is based on a voltage source converter and is installed in parallel to control the voltage of the transmission line in the power system. In this paper, a flat adaptive control system for STATCOM output voltage control is simulated. By linearizing the nonlinear dynamics and changing the system state variables, the control...

متن کامل

A New Control Strategy for Voltage Restoration and Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid

Low voltage microgrids including sensitive loads often face unbalanced load conditions. Therefore, a compensation procedure should be carried out in order to balance and restore sensitive load’s voltage. In this paper, an effective voltage control strategy has been proposed for the autonomous operation of microgrids, under unbalanced load conditions.  The proposed strategy balances single-phase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017